Caesar cipher

The action of a Caesar cipher is to replace each plaintext letter with one a fixed number of places down the alphabet. This example is with a shift of three, so that a B in the plaintext becomes E in the ciphertext.
In cryptography, a Caesar cipher, also known as a Caesar's cipher, the shift cipher, Caesar's code or Caesar shift, is one of the simplest and most widely known encryption techniques. It is a type of substitution cipher in which each letter in the plaintext is replaced by a letter some fixed number of positions down the alphabet. For example, with a shift of 3, A would be replaced by D, B would become E, and so on. The method is named after Julius Caesar, who used it to communicate with his generals.

The encryption step performed by a Caesar cipher is often incorporated as part of more complex schemes, such as the Vigenère cipher, and still has modern application in the ROT13 system. As with all single alphabet substitution ciphers, the Caesar cipher is easily broken and in practice offers essentially no communication security.

Example

The transformation can be represented by aligning two alphabets; the cipher alphabet is the plain alphabet rotated left or right by some number of positions. For instance, here is a Caesar cipher using a right rotation of three places (the shift parameter, here 3, is used as the key):

Plain: ABCDEFGHIJKLMNOPQRSTUVWXYZ Cipher: DEFGHIJKLMNOPQRSTUVWXYZABC

To encipher a message, simply look up each letter of the message in the "plain" line and write down the corresponding letter in the "cipher" line. To decipher, do the reverse.

Plaintext: the quick brown fox jumps over the lazy dog Ciphertext: WKH TXLFN EURZQ IRA MXPSV RYHU WKH ODCB GRJ

The encryption can also be represented using modular arithmetic by first transforming the letters into numbers, according to the scheme, A = 0, B = 1,..., Z = 25. Encryption of a letter by a shift n can be described mathematically as,

Decryption is performed similarly,

(Note, there are different definitions for the modulo operation. In the above, the result is in the range 0...25. I.e., if x+n or x-n are not in the range 0...25, we have to subtract or add 26).

The replacement remains the same throughout the message, so the cipher is classed as a type of monoalphabetic substitution, as opposed to polyalphabetic substitution.

History and usage

The Caesar cipher is named for Julius Caesar, who used an alphabet with a left shift of three.

The Caesar cipher is named after Julius Caesar, who, according to Suetonius, used it with a left shift of three to protect messages of military significance:
If he had anything confidential to say, he wrote it in cipher, that is, by so changing the order of the letters of the alphabet, that not a word could be made out. If anyone wishes to decipher these, and get at their meaning, he must substitute the fourth letter of the alphabet, namely D, for A, and so with the others. — Suetonius, Life of Julius Caesar 56 [1].
While Caesar's was the first recorded use of this scheme, other substitution ciphers are known to have been used earlier. His nephew Augustus also used the cipher, but with a right shift of one, and it did not wrap around to the beginning of the alphabet:
Whenever he wrote in cipher, he wrote B for A, C for B, and the rest of the letters on the same principle, using AA for X. — Suetonius, Life of Augustus 88.
There is evidence that Julius Caesar used more complicated systems as well, and one writer, Aulus Gellius, refers to a (now lost) treatise on his ciphers:
There is even a rather ingeniously written treatise by the grammarian Probus concerning the secret meaning of letters in the composition of Caesar's epistles. — Aulus Gellius, 17.9.1–5.
It is unknown how effective the Caesar cipher was at the time, but it is likely to have been reasonably secure, not least because few of Caesar's enemies would have been literate, let alone able to consider cryptanalysis. Assuming that an attacker could read the message, there is no record at that time of any techniques for the solution of simple substitution ciphers. The earliest surviving records date to the 9th century in the Arab world with the discovery of frequency analysis.

A Caesar cipher with a shift of one appears on the back of the Mezuzah.[1]

In the 19th century, the personal advertisements section in newspapers would sometimes be used to exchange messages encrypted using simple cipher schemes. Kahn (1967) describes instances of lovers engaging in secret communications enciphered using the Caesar cipher in The Times. Even as late as 1915, the Caesar cipher was in use: the Russian army employed it as a replacement for more complicated ciphers which had proved to be too difficult for their troops to master; German and Austrian cryptanalysts had little difficulty in decrypting their messages.

Caesar ciphers can be found today in children's toys such as secret decoder rings. A Caesar shift of thirteen is also performed in the ROT13 algorithm, a simple method of obfuscating text used in some Internet forums to obscure text (such as joke punchlines and story spoilers), but not used as a method of encryption.

The Vigenère cipher uses a Caesar cipher with a different shift at each position in the text; the value of the shift is defined using a repeating keyword. If a single-use keyword is as long as the message and chosen randomly then this is a one-time pad cipher, unbreakable if the users maintain the keyword's secrecy. Keywords shorter than the message (e.g., "Complete Victory"), used historically, introduce a cyclic pattern that might be detected with a statistically advanced version of frequency analysis.

In April 2006, fugitive Mafia boss Bernardo Provenzano was captured in Sicily partly because of cryptanalysis of his messages written in a variation of the Caesar cipher. Provenzano's cipher used numbers, so that "A" would be written as "4", "B" as "5", and so on.[2]

Breaking the cipher

Decryption
shift
Candidate plaintext
0exxegoexsrgi
1dwwdfndwrqfh
2cvvcemcvqpeg
3buubdlbupodf
4attackatonce
5zsszbjzsnmbd
6yrryaiyrmlac
...
23haahjrhavujl
24gzzgiqgzutik
25fyyfhpfytshj
The Caesar cipher can be easily broken even in a ciphertext-only scenario. Two situations can be considered: 1) an attacker knows (or guesses) that some sort of simple substitution cipher has been used, but not specifically that it is a Caesar scheme; and 2) an attacker knows that a Caesar cipher is in use, but does not know the shift value.

In the first case, the cipher can be broken using the same techniques as for a general simple substitution cipher, such as frequency analysis or pattern words. While solving, it is likely that an attacker will quickly notice the regularity in the solution and deduce that a Caesar cipher is the specific algorithm employed.

The distribution of letters in a typical sample of English language text has a distinctive and predictable shape. A Caesar shift "rotates" this distribution, and it is possible to determine the shift by examining the resultant frequency graph.
In the second instance, breaking the scheme is even more straightforward. Since there are only a limited number of possible shifts (26 in English), they can each be tested in turn in a brute force attack. One way to do this is to write out a snippet of the ciphertext in a table of all possible shifts — a technique sometimes known as "completing the plain component". The example given is for the ciphertext "EXXEGOEXSRGI"; the plaintext is instantly recognisable by eye at a shift of four. Another way of viewing this method is that, under each letter of the ciphertext, the entire alphabet is written out in reverse starting at that letter. This attack can be accelerated using a set of strips prepared with the alphabet written down them in reverse order. The strips are then aligned to form the ciphertext along one row, and the plaintext should appear in one of the other rows.

Another brute force approach is to match up the frequency distribution of the letters. By graphing the frequencies of letters in the ciphertext, and by knowing the expected distribution of those letters in the original language of the plaintext, a human can easily spot the value of the shift by looking at the displacement of particular features of the graph. This is known as frequency analysis. For example in the English language the plaintext frequencies of the letters E, T, (usually most frequent), and Q, Z (typically least frequent) are particularly distinctive. Computers can also do this by measuring how well the actual frequency distribution matches up with the expected distribution; for example, the chi-square statistic can be used.

For natural language plaintext, there will, in all likelihood, be only one plausible decryption, although for extremely short plaintexts, multiple candidates are possible. For example, the ciphertext MPQY could, plausibly, decrypt to either "aden" or "know" (assuming the plaintext is in English); similarly, "ALIIP" to "dolls" or "wheel"; and "AFCCP" to "jolly" or "cheer" (see also unicity distance).

Multiple encryptions and decryptions provide no additional security. This is because two encryptions of, say, shift A and shift B, will be equivalent to an encryption with shift A + B. In mathematical terms, the encryption under various keys forms a group.

References

• David Kahn, The Codebreakers — The Story of Secret Writing, 1967. ISBN 0-684-83130-9.
• F.L. Bauer, Decrypted Secrets, 2nd edition, 2000, Springer. ISBN 3-540-66871-3.
• Chris Savarese and Brian Hart, The Caesar Cipher, 1999 link

Cryptography (or cryptology; derived from Greek κρυπτός kryptós "hidden," and the verb γράφω gráfo "write" or λεγειν legein
encryption is the process of transforming information (referred to as plaintext) to make it unreadable to anyone except those possessing special knowledge, usually referred to as a key.
In cryptography, a substitution cipher is a method of encryption by which units of plaintext are substituted with ciphertext according to a regular system; the "units" may be single letters (the most common), pairs of letters, triplets of letters, mixtures of the above, and so
plaintext is information used as input to an encryption algorithm; the output is termed ciphertext. The plaintext could be, for example, a diplomatic message, a bank transaction, an e-mail, a diary and so forth — any information that someone might want to prevent
ABCs redirects here, for the Alien Big Cats, see British big cats.

An alphabet is a standardized set of letters
Gaius Julius Caesar
Dictator of the Roman Republic

Reign October, 49 BC–March 15, 44 BC
Full name Gaius Julius Caesar
Born 12 July 100 BC - 102 BC
Rome, Roman Republic
Died 15 March 44 BC (aged 57)
A General Officer is an officer of high military rank. The term is used by nearly every country in the world. General can be used as a generic term for all grades of general officer, or it can specifically refer to a single rank that is just called General.
Vigenère cipher is a method of encrypting alphabetic text by using a series of different Caesar ciphers based on the letters of a keyword. It is a simple form of polyalphabetic substitution.

The Vigenère cipher has been reinvented many times.
ROT13 ("rotate by 13 places", sometimes hyphenated ROT-13) is a simple Caesar cipher used in online forums as a means of hiding spoilers, punchlines, puzzle solutions, and offensive materials from the casual glance.
ABCs redirects here, for the Alien Big Cats, see British big cats.

An alphabet is a standardized set of letters
key is a piece of information (a parameter) that controls the operation of a cryptographic algorithm. In encryption, a key specifies the particular transformation of plaintext into ciphertext, or vice versa during decryption.
encryption is the process of transforming information (referred to as plaintext) to make it unreadable to anyone except those possessing special knowledge, usually referred to as a key.
Modular arithmetic (sometimes called modulo arithmetic, or clock arithmetic) is a system of arithmetic for integers, where numbers "wrap around" after they reach a certain value — the modulus.
modulo operation finds the remainder of division of one number by another.

Given two numbers, a (the dividend) and n (the divisor), a modulo n (abbreviated as a mod n) is the remainder, on division of a
In cryptography, a substitution cipher is a method of encryption by which units of plaintext are substituted with ciphertext according to a regular system; the "units" may be single letters (the most common), pairs of letters, triplets of letters, mixtures of the above, and so
A polyalphabetic cipher is any cipher based on substitution, using multiple substitution alphabets. The Vigenère cipher is probably the best-known example of a polyalphabetic cipher, though it is a simplified special case.
Gaius Julius Caesar
Dictator of the Roman Republic

Reign October, 49 BC–March 15, 44 BC
Full name Gaius Julius Caesar
Born 12 July 100 BC - 102 BC
Rome, Roman Republic
Died 15 March 44 BC (aged 57)
On the Life of the Caesars[1], in Latin De vita Caesarum, or as it is often known in English, The Twelve Caesars, is a set of twelve biographies of Julius Caesar and the first 11 emperors of the Roman Empire.
Augustus Caesar
Emperor of the Roman Empire

Reign January 16 27 BC – August 19 AD 14
Full name Gaius Julius Caesar Octavianus
Born September 23, 63 BC
Rome, Roman Republic
Died August 19, AD 14 (age 76)
Aulus Gellius (ca. 125 - after 180), Latin author and grammarian, possibly of African origin, probably born and certainly brought up at Rome.

He studied grammar and rhetoric at Rome and philosophy at Athens, after which he returned to Rome, where he held a judicial office.
literacy is considered to be the ability to read and write, or the ability to use language to read, write, listen, and speak. In modern contexts, the word refers to reading and writing at a level adequate for communication, or at a level that lets one understand and communicate
Cryptanalysis (from the Greek kryptós, "hidden", and analıein, "to loosen" or "to untie") is the study of methods for obtaining the meaning of encrypted information, without access to the secret information which is normally required to do so.

frequency analysis is the study of the frequency of letters or groups of letters in a ciphertext. The method is used as an aid to breaking classical ciphers.

Frequency analysis is based on the fact that, in any given stretch of written language, certain letters and
A mezuzah (Hebrew: מזוזה‎ "doorpost") (plural: mezuzot
David Kahn (born February 7, 1930[1]) is a US historian, journalist and writer. He has written extensively on the history of cryptography and military intelligence.
The Times

Front page from a October 17, 2007 edition
Type Daily newspaper
Format Compact

Owner Times Newspapers Ltd
Editor Robert James Thomson
Founded 1785
Political allegiance Centre / Centre Right
Price £0.70 (Monday-Friday)
£1.