Biomass gasification

Gasification is a process that converts carbonaceous materials, such as coal, petroleum, or biomass, into carbon monoxide and hydrogen by reacting the raw material at high temperatures with a controlled amount of oxygen. The resulting gas mixture is called synthesis gas or syngas and is itself a fuel. Gasification is a very efficient method for extracting energy from many different types of organic materials, and also has applications as a clean waste disposal technique.

The advantage of gasification is that using the syngas is more efficient than direct combustion of the original fuel; more of the energy contained in the fuel is extracted. Syngas may be burned directly in internal combustion engines, used to produce methanol and hydrogen, or converted via the Fischer-Tropsch process into synthetic fuel. Gasification can also begin with materials that are not otherwise useful fuels, such as biomass or organic waste. In addition, the high-temperature combustion refines out corrosive ash elements such as chloride and potassium, allowing clean gas production from otherwise problematic fuels.

Gasification of fossil fuels is currently widely used on industrial scales to generate electricity. However, almost any type of organic material can be used as the raw material for gasification, such as wood, biomass, or even plastic waste. Thus, gasification may be an important technology for renewable energy. In particular biomass gasification is carbon neutral.

Gasification relies on chemical processes at elevated temperatures >700°C, which distinguishes it from biological processes such as anaerobic digestion that produce biogas.

Chemistry

In a gasifier, the carbonaceous material undergoes several different processes:
Pyrolysis of carbonaceous fuels
Gasification of char
  1. The pyrolysis (or devolatilization) process occurs as the carbonaceous particle heats up. Volatiles are released and char is produced, resulting in up to 70% weight loss for coal. The process is dependent on the properties of the carbonaceous material and determines the structure and composition of the char, which will then undergo gasification reactions.
  2. The combustion process occurs as the volatile products and some of the char reacts with oxygen to form carbon dioxide and carbon monoxide, which provides heat for the subsequent gasification reactions. Letting C represent a carbon-containing organic compound, the basic reaction here is
  3. The gasification process occurs as the char reacts with carbon dioxide and steam to produce carbon monoxide and hydrogen, via the reaction
  4. In addition, the reversible gas phase water gas shift reaction reaches equilibrium very fast at the temperatures in a gasifier. This balances the concentrations of carbon monoxide, steam, carbon dioxide and hydrogen.


In essence, a limited amount of oxygen or air is introduced into the reactor to allow some of the organic material to be "burned" to produce carbon monoxide and energy, which drives a second reaction that converts further organic material to hydrogen and additional carbon monoxide.

History

The gasification process was originally developed in the 1800s to produce town gas for lighting and cooking. Natural gas and electricity later replaced town gas for these applications, but the gasification process has been utilized for the production of synthetic chemicals and fuels since the 1920s.

Wood gas generators, called Gasogene or Gazogène, were used to power motor vehicles in Europe during World War II fuel shortages.[1]

Current Applications

Industrial-scale gasification is currently mostly used to produce electricity from fossil fuels such as coal, where the syngas is burned in a gas turbine.

Gasification is also used industrially in the production of electricity, ammonia and liquid fuels (oil) using Integrated Gasification Combined Cycles (IGCC), with the possibility of producing methane and hydrogen for fuel cells. IGCC is also a more efficient method of CO2 capture as compared to conventional technologies. IGCC demonstration plants have been operating since the early 1970s and some of the plants constructed in the 1990s are now entering commercial service.

Within the last few years, gasification technologies have been developed that use plastic-rich waste as a feed. In a plant in Germany such a technology—on large scale—converts plastic waste via syngas into methanol.[2]

Small-scale rural biomass gasifiers have been applied in India to a large extent. Especially in the state of Tamil-Nadu in South-India. Most of the applications are 9 kWe systems used for (drink) water pumping and street lighting operated by the local panchayat government. Although technically applicable the systems do face a number of problems. There are political, financial and maintenance problems. Most of the systems are no longer running after 1...3 years.

Potential for Renewable Energy

Gasification can proceed from just about any organic material, including biomass and plastic waste. The resulting syngas burns cleanly into water vapor and carbon dioxide. Alternatively, syngas may be converted efficiently to methane via the Sabatier reaction, or diesel-like synthetic fuel via the Fischer-Tropsch process. Inorganic components of the input material, such as metals and minerals, are trapped in an inert and environmentally safe form as ash, which may have use as a fertilizer.

Regardless of the final fuel form, gasification itself and subsequent processing neither emits nor traps greenhouse gasses such as carbon dioxide. Combustion of syngas or derived fuels does of course emit carbon dioxide. However, biomass gasification could play a significant role in a renewable energy economy, because biomass production removes CO2 from the atmosphere. While other biofuel technologies such as biogas and biodiesel are also carbon neutral, gasification runs on a wider variety of input materials, can be used to produce a wider variety of output fuels, and is an extremely efficient method of extracting energy from biomass.

Biomass gasification is therefore one of the most technically and economically convincing energy possibilities for a carbon neutral economy [3]

There is at present very little industrial scale biomass gasification being done. The Renewable Energy Network Austria[4] is associated with several successful biomass gasification demonstration projects, including a plant using dual fluidized bed gasification[5] that has supplied the town of Güssing with 2 MW of electicity and 4 MW of heat, generated from wood chips, since 2003.

Gasification processes

Four types of gasifier are currently available for commercial use: counter-current fixed bed, co-current fixed bed, Hybrid Gasificationfluidized bedand entrained flow.[6][7][8]

The counter-current fixed bed ("up draft") gasifier consists of a fixed bed of carbonaceous fuel (e.g. coal or biomass) through which the "gasification agent" (steam, oxygen and/or air) flows in counter-current configuration. The ash is either removed dry or as a slag. The slagging gasifiers require a higher ratio of steam and oxygen to carbon in order to reach temperatures higher than the ash fusion temperature. The nature of the gasifier means that the fuel must have high mechanical strength and must be non-caking so that it will form a permeable bed, although recent developments have reduced these restrictions to some extent. The throughput for this type of gasifier is relatively low. Thermal efficiency is high as the gas exit temperatures are relatively low. However, this means that tar and methane production is significant at typical operation temperatures, so product gas must be extensively cleaned before use or recycled to the reactor.

The co-current fixed bed ("down draft") gasifier is similar to the counter-current type, but the gasification agent gas flows in co-current configuration with the fuel (downwards, hence the name "down draft gasifier"). Heat needs to be added to the upper part of the bed, either by combusting small amounts of the fuel or from external heat sources. The produced gas leaves the gasifier at a high temperature, and most of this heat is often transferred to the gasification agent added in the top of the bed, resulting in an energy efficiency on level with the counter-current type. Since all tars must pass through a hot bed of char in this configuration, tar levels are much lower than the counter-current type.

In the fluidized bed gasifier, the fuel is fluidized in oxygen and steam or air. The ash is removed dry or as heavy agglomerates that defluidize. The temperatures are relatively low in dry ash gasifiers, so the fuel must be highly reactive; low-grade coals are particularly suitable. The agglomerating gasifiers have slightly higher temperatures, and are suitable for higher rank coals. Fuel throughput is higher than for the fixed bed, but not as high as for the entrained flow gasifier. The conversion efficiency can be rather low due to elutriation of carbonaceous material. Recycle or subsequent combustion of solids can be used to increase conversion. Fluidized bed gasifiers are most useful for fuels that form highly corrosive ash that would damage the walls of slagging gasifiers. Biomass fuels generally contain high levels of corrosive ash.

In the entrained flow gasifier a dry pulverized solid, an atomized liquid fuel or a fuel slurry is gasified with oxygen (much less frequent: air) in co-current flow. The gasification reactions take place in a dense cloud of very fine particles. Most coals are suitable for this type of gasifier because of the high operating temperatures and because the coal particles are well separated from one another. The high temperatures and pressures also mean that a higher throughput can be achieved, however thermal efficiency is somewhat lower as the gas must be cooled before it can be cleaned with existing technology. The high temperatures also mean that tar and methane are not present in the product gas; however the oxygen requirement is higher than for the other types of gasifiers. All entrained flow gasifiers remove the major part of the ash as a slag as the operating temperature is well above the ash fusion temperature. A smaller fraction of the ash is produced either as a very fine dry fly ash or as a black colored fly ash slurry. Some fuels, in particular certain types of biomasses, can form slag that is corrosive for ceramic inner walls that serve to protect the gasifier outer wall. However some entrained bed type of gasifiers do not possess a ceramic inner wall but have an inner water or steam cooled wall covered with partially solidified slag. These types of gasifiers do not suffer from corrosive slags. Some fuels have ashes with very high ash fusion temperatures. In this case mostly limestone is mixed with the fuel prior to gasification. Addition of a little limestone will usually suffice for the lowering the fusion temperatures. The fuel particles must be much smaller than for other types of gasifiers. This means the fuel must be pulverized, which requires somewhat more energy than for the other types of gasifiers. By far the most energy consumption related to entrained bed gasification is not the milling of the fuel but the production of oxygen used for the gasification.

Waste Disposal

Enlarge picture
HTCW diagram
High Temperature Conversion of Waste (HTCW) is a high temperature melting downdraft gasification process which gasifies the feed material within a controlled and limited oxygen supply. Combustion of the feed material is prevented by the limited oxygen supply.

The temperature within the HTCW reactor reaches 2700°C, at which point molecular dissociation takes place. The pollutants that were contained within the feed waste material such as dioxins, furans, as well as pathogens are completely cracked into harmless compounds.

All metal components in the waste stream are converted into a castable iron alloy/pig iron for use in steel foundries. The mineral fraction is reduced to a non-leaching vitrified glass, used for road construction and/or further processed into a mineral wool for insulation. All of the organic material is fully converted to a fuel quality synthesis gas which can be used to produce electrical energy, heat, methanol, or used in the production of various other chemical compounds. The resultant syngas, with a H2/CO ratio of nearly 1:1, is being further investigated for use in the production of Fischer-Tropsch fuels. Under certain conditions, heat from the reactor could be used for district heating, industrial steam production or water desalination plants.

The HTCW was designed by the K.B.I. Group GMBH to convert any types of waste except for radioactive material. The HTCW reactor works on the principle of negative pressure downdraft gasification. This means that there are no emissions from HTCW reactor itself. The syngas is drawn down through the high temperature zone and then to the gas cleaning system also designed by the K.B.I Group. The clean gas may then be utilized as already mentioned, or exported to an end user such as a power station.

The HTCW process was examined by the Environment Agency, an organization that examines all available methods for the environmentally sound treatment of waste on behalf of the British Government. The resulting case study was published in their online databank and recognizes the HTCW technology to be a suitable process for the treatment of waste.[9]

See also

External links

References

1. ^ Gas Generator Project History of the Gasogene technology.
2. ^ Converting waste to methanol
3. ^ Read, Peter, Carbon cycle management with increased photo-synthesis and long-term sinks. Royal Society of New Zealand, [1]
4. ^ [2]
5. ^ [3]
6. ^ Beychok, M.R., Process and environmental technology for producing SNG and liquid fuels, U.S. EPA report EPA-660/2-75-011, May 1975
7. ^ Beychok, M.R., Coal gasification for clean energy, Energy Pipelines and Systems, March 1974
8. ^ Beychok, M.R., Coal gasification and the Phenosolvan process, American Chemical Society 168th National Meeting, Atlantic City, September 1974
9. ^ KBI Process Review, www.environment-agency.gov.uk/wtd, Retrieved 28.12.06


Coal (IPA: /ˈkəʊl/) is a fossil fuel formed in swamp ecosystems where plant remains were saved by water and mud from oxidization and biodegradation.
..... Click the link for more information.
Petroleum (Latin Petroleum derived from Greek πέτρα (Latin petra) - rock + έλαιον (Latin oleum) - oil) or crude oil
..... Click the link for more information.
Biomass refers to living and recently dead biological material which can be used as fuel or for industrial production.
..... Click the link for more information.
Carbon monoxide, with the chemical formula CO, is a colorless, odorless, and tasteless gas. It is the product of the incomplete combustion of carbon-containing compounds, notably in internal-combustion engines.
..... Click the link for more information.
1, −1
(amphoteric oxide)
Electronegativity 2.20 (Pauling scale) More

Atomic radius 25 pm
Atomic radius (calc.) 53 pm
Covalent radius 37 pm
Van der Waals radius 120 pm
Miscellaneous

Thermal conductivity (300 K) 180.
..... Click the link for more information.
2, −1
(neutral oxide)
Electronegativity 3.44 (Pauling scale)
Ionization energies
(more) 1st: 1313.9 kJmol−1
2nd: 3388.3 kJmol−1
3rd: 5300.5 kJmol−1

Atomic radius 60 pm
Atomic radius (calc.
..... Click the link for more information.
Syngas (from synthesis gas) is the name given to a gas mixture that contains varying amounts of carbon monoxide and hydrogen generated by the gasification of a carbon containing fuel to a gaseous product with a heating value.
..... Click the link for more information.
Syngas (from synthesis gas) is the name given to a gas mixture that contains varying amounts of carbon monoxide and hydrogen generated by the gasification of a carbon containing fuel to a gaseous product with a heating value.
..... Click the link for more information.
energy (from the Greek ενεργός, energos, "active, working")[1] is a scalar physical quantity that is a property of objects and systems of objects which is conserved by nature.
..... Click the link for more information.
Waste management is the collection, transport, processing, recycling or disposal of waste materials, usually ones produced by human activity, in an effort to reduce their effect on human health or local aesthetics or amenity.
..... Click the link for more information.
Syngas (from synthesis gas) is the name given to a gas mixture that contains varying amounts of carbon monoxide and hydrogen generated by the gasification of a carbon containing fuel to a gaseous product with a heating value.
..... Click the link for more information.
Syngas (from synthesis gas) is the name given to a gas mixture that contains varying amounts of carbon monoxide and hydrogen generated by the gasification of a carbon containing fuel to a gaseous product with a heating value.
..... Click the link for more information.
Methanol, also known as methyl alcohol, carbinol, wood alcohol, wood naptha or wood spirits, is a chemical compound with chemical formula CH3OH.
..... Click the link for more information.
1, −1
(amphoteric oxide)
Electronegativity 2.20 (Pauling scale) More

Atomic radius 25 pm
Atomic radius (calc.) 53 pm
Covalent radius 37 pm
Van der Waals radius 120 pm
Miscellaneous

Thermal conductivity (300 K) 180.
..... Click the link for more information.
The Fischer-Tropsch process is a catalyzed chemical reaction in which carbon monoxide and hydrogen are converted into liquid hydrocarbons of various forms. Typical catalysts used are based on iron and cobalt.
..... Click the link for more information.
Synthetic fuel or synfuel is any liquid fuel obtained from coal, natural gas, or biomass. It can sometimes refer to fuels derived from other solids such as oil shale, tar sand, waste plastics, or from the fermentation of biomatter.
..... Click the link for more information.
Biomass refers to living and recently dead biological material which can be used as fuel or for industrial production.
..... Click the link for more information.
Organic may refer to:
  • Organism, a living entity.
  • Organ (anatomy), of or relating to a bodily organ.
Life:
  • Organic life
  • Life
  • Biology
  • Organism
Materials and substances:
  • Organic material

..... Click the link for more information.
Fossil fuels or mineral fuels are hydrocarbons found within the top layer of the earth’s crust. They range from very volatile materials with low carbon:hydrogen ratios like methane, to liquid petroleum to nonvolatile materials composed of almost pure carbon, like
..... Click the link for more information.
Electricity (from New Latin ēlectricus, "amberlike") is a general term for a variety of phenomena resulting from the presence and flow of electric charge. This includes many well-known physical phenomena such as lightning, electromagnetic fields and electric currents,
..... Click the link for more information.
Organic may refer to:
  • Organism, a living entity.
  • Organ (anatomy), of or relating to a bodily organ.
Life:
  • Organic life
  • Life
  • Biology
  • Organism
Materials and substances:
  • Organic material

..... Click the link for more information.
The WOOD callsign may refer to:
  • WOOD-TV – an NBC-affiliated television station in Grand Rapids, Michigan
  • WOOD (AM) – an AM radio station in Grand Rapids, Michigan
  • WOOD-FM - an FM radio station in Grand Rapids, Michigan




..... Click the link for more information.
Biomass refers to living and recently dead biological material which can be used as fuel or for industrial production.
..... Click the link for more information.
Plastic is the general term for a wide range of synthetic or semisynthetic polymerization products. They are composed of organic condensation or addition polymers and may contain other substances to improve performance or economics.
..... Click the link for more information.
Renewable energy utilizes natural resources such as sunlight, wind, tides and geothermal heat, which are naturally replenished. Renewable energy technologies range from solar power, wind power, and hydroelectricity to biomass and biofuels for transportation.
..... Click the link for more information.
Biomass refers to living and recently dead biological material which can be used as fuel or for industrial production.
..... Click the link for more information.
For other uses, see Carbon neutral (disambiguation)


Being carbon neutral, or carbon neutrality, refers to neutral (meaning zero) total carbon release, brought about by balancing the amount of carbon released with the amount sequestered.
..... Click the link for more information.
Anaerobic digestion (AD) is the natural process of biological degradation of organic material in the absence of air. An anaerobic digester is a man-made system that harnesses this process to treat waste and produce biogas and anaerobic digestate, a soil-improving material.
..... Click the link for more information.
Biogas typically refers to a (biofuel) gas produced by the anaerobic digestion or fermentation of organic matter including manure, sewage sludge, municipal solid waste, biodegradable waste or any other biodegradable feedstock, under anaerobic conditions.
..... Click the link for more information.
Pyrolysis is the chemical decomposition of organic materials by heating in the absence of oxygen or any other reagents, except possibly steam.

It is used in chemical analysis to break down complex matter into simpler molecules for identification, for example by pyrolysis gas
..... Click the link for more information.


This article is copied from an article on Wikipedia.org - the free encyclopedia created and edited by online user community. The text was not checked or edited by anyone on our staff. Although the vast majority of the wikipedia encyclopedia articles provide accurate and timely information please do not assume the accuracy of any particular article. This article is distributed under the terms of GNU Free Documentation License.