Gamma radiation

Gamma rays or gamma-ray (denoted as γ) are forms of electromagnetic radiation (EMR) or light emissions of a specific frequency produced from sub-atomic particle interaction, such as electron-positron annihilation and radioactive decay; most are generated from nuclear reactions occurring within the interstellar medium of space. Gamma rays are generally characterized as electromagnetic radiation, having the highest frequency and energy, and also the shortest wavelength, within the electromagnetic spectrum, i.e. high energy photons. Due to their high energy content, they are able to cause serious damage when absorbed by living cells.

Properties

Shielding

Shielding for gamma rays requires large amounts of mass. The material used for shielding takes into account that gamma rays are better absorbed by materials with high atomic number and high density. Also, the higher the energy of the gamma rays, the thicker the shielding required. Materials for shielding gamma rays are typically illustrated by the thickness required to reduce the intensity of the gamma rays by one half (the half value layer or HVL). For example, gamma rays that require 1 cm (0.4 inches) of lead to reduce their intensity by 50% will also have their intensity reduced in half by 6 cm (2½ inches) of concrete or 9 cm (3½ inches) of packed dirt.


Matter interaction

Enlarge picture
The total absorption coefficient of aluminium (atomic number 13) for gamma rays, plotted versus gamma energy, and the contributions by the three effects. Over most of the energy region shown, the Compton effect dominates.
Enlarge picture
The total absorption coefficient of lead (atomic number 82) for gamma rays, plotted versus gamma energy, and the contributions by the three effects. Here, the photo effect dominates at low energy. Above 5 MeV, pair production starts to dominate


When a gamma ray passes through matter, the probability for absorption in a thin layer is proportional to the thickness of that layer. This leads to an exponential decrease of intensity with thickness.



Here, μ = n×σ is the absorption coefficient, measured in cm−1, n the number of atoms per cm3 in the material, σ the absorption cross section in cm2 and d the thickness of material in cm.

In passing through matter, gamma radiation ionizes via three main processes: the photoelectric effect, Compton scattering, and pair production.
  • Photoelectric Effect: This describes the case in which a gamma photon interacts with and transfers its energy to an atomic electron, ejecting that electron from the atom. The kinetic energy of the resulting photoelectron is equal to the energy of the incident gamma photon minus the binding energy of the electron. The photoelectric effect is the dominant energy transfer mechanism for x-ray and gamma ray photons with energies below 50 keV (thousand electron volts), but it is much less important at higher energies.
  • Compton Scattering: This is an interaction in which an incident gamma photon loses enough energy to an atomic electron to cause its ejection, with the remainder of the original photon's energy being emitted as a new, lower energy gamma photon with an emission direction different from that of the incident gamma photon. The probability of Compton scatter decreases with increasing photon energy. Compton scattering is thought to be the principal absorption mechanism for gamma rays in the intermediate energy range 100 keV to 10 MeV (megaelectronvolts), an energy spectrum which includes most gamma radiation present in a nuclear explosion. Compton scattering is relatively independent of the atomic number of the absorbing material.
  • Pair Production: By interaction via the Coulomb force, in the vicinity of the nucleus, the energy of the incident photon is spontaneously converted into the mass of an electron-positron pair. A positron is the anti-matter equivalent of an electron; it has the same mass as an electron, but it has a positive charge equal in strength to the negative charge of an electron. Energy in excess of the equivalent rest mass of the two particles (1.02 MeV) appears as the kinetic energy of the pair and the recoil nucleus. The positron has a very short lifetime (if immersed in matter) (about 10-8 seconds). At the end of its range, it combines with a free electron. The entire mass of these two particles is then converted into two gamma photons of 0.51 MeV energy each.
The secondary electrons (or positrons) produced in any of these three processes frequently have enough energy to produce many ionizations up to the end of range.

The exponential absorption described above holds, strictly speaking, only for a narrow beam of gamma rays. If a wide beam of gamma rays passes through a thick slab of concrete, the scattering from the sides reduces the absorption.

Gamma decay

Gamma rays are often produced alongside other forms of radiation such as alpha or beta. When a nucleus emits an α or β particle, the daughter nucleus is sometimes left in an excited state. It can then jump down to a lower level by emitting a gamma ray in much the same way that an atomic electron can jump to a lower level by emitting visible light or ultraviolet radiation.

Gamma rays, x-rays, visible light, and UV rays are all forms of electromagnetic radiation. The only difference is the frequency and hence the energy of the photons. Gamma rays are the most energetic. An example of gamma ray production follows.

First 60Co decays to excited 60Ni by beta decay:
Then the 60Ni drops down to the ground state (see nuclear shell model) by emitting two gamma rays in succession:


Gamma rays of 1.17 MeV and 1.33 MeV are produced.

Another example is the alpha decay of 241Am to form 237Np; this alpha decay is accompanied by gamma emission. In some cases, the gamma emission spectrum for a nucleus (daughter nucleu) is quite simple, (eg 60Co/60Ni) while in other cases, such as with (241Am/237Np and 192Ir/192Pt), the gamma emission spectrum is complex, revealing that a series of nuclear energy levels can exist. The fact that an alpha spectrum can have a series of different peaks with different energies reinforces the idea that several nuclear energy levels are possible.
Enlarge picture
Image of entire sky in 100 MeV or greater gamma rays as seen by the EGRET instrument aboard the CGRO spacecraft. Bright spots within the galactic plane are pulsars while those above and below the plane are thought to be quasars.


Because a beta decay is accompanied by the emission of a neutrino which also carries energy away, the beta spectrum does not have sharp lines, but instead is a broad peak. Hence from beta decay alone it is not possible to probe the different energy levels found in the nucleus.

In optical spectroscopy, it is well known that an entity which emits light can also absorb light at the same wavelength (photon energy). For instance, a sodium flame can emit yellow light as well as absorb the yellow light from a sodium vapour lamp. In the case of gamma rays, this can be seen in Mössbauer spectroscopy. Here, a correction for the energy lost by the recoil of the nucleus is made and the exact conditions for gamma ray absorption through resonance can be attained.

This is similar to the Franck Condon effects seen in optical spectroscopy.

Uses

Enlarge picture
Gamma-ray Image of a Truck taken with a VACIS (Vehicle and Container Imaging System)
Because the wavelength of gamma radiation is so short, a single incident photon can impart significant damage to a living cell. This property means that gamma radiation is often used to kill living organisms, in a process called irradiation. Applications of this include sterilising medical equipment (as an alternative to autoclaves or chemical means), removing decay-causing bacteria from many foodstuffs or preventing fruit and vegetables from sprouting to maintain freshness and flavour.

Due to their tissue penetrating property, gamma rays/X-rays have a wide variety of medical uses such as in CT Scans and radiation therapy (see X-ray). However, as a form of ionizing radiation they have the ability to effect molecular changes, giving them the potential to cause cancer when DNA is affected. The molecular changes can also be used to alter the properties of semi-precious stones, and is often used to change white topaz into blue topaz.

Despite their cancer-causing properties, gamma rays are also used to treat some types of cancer. In the procedure called gamma-knife surgery, multiple concentrated beams of gamma rays are directed on the growth in order to kill the cancerous cells. The beams are aimed from different angles to focus the radiation on the growth while minimizing damage to the surrounding tissues.
Enlarge picture
The Moon as seen in gamma rays by the Compton Gamma Ray Observatory. Surprisingly, the Moon is actually brighter than the Sun at gamma ray wavelengths.
Gamma rays are also used for diagnostic purposes in nuclear medicine. Several gamma-emitting radioisotopes are used, one of which is technetium-99m. When administered to a patient, a gamma camera can be used to form an image of the radioisotope's distribution by detecting the gamma radiation emitted. Such a technique can be employed to diagnose a wide range of conditions (e.g. spread of cancer to the bones).

Gamma ray detectors are also starting to be used in Pakistan as part of the Container Security Initiative (CSI). These US$5 million machines are advertised to scan 30 containers per hour. The objective of this technique is to pre-screen merchant ship containers before they enter U.S. ports.

Health effect

The gamma rays are the most dangerous form of radiation emitted by a nuclear explosion because of the difficulty in stopping them. Gamma-rays are not stopped by the skin.

They can induce DNA alteration by interfering with the genetic material of the cell. DNA double-strand breaks are generally accepted to be the most biologically significant lesion by which ionizing radiation causes cancer and hereditary disease.[1].

A study done on Russian nuclear workers exposed to external whole-body gamma radiation at high cumulative doses shows the link between radiation exposure and death from leukemia, lung, liver, skeletal and other solid cancers.[2].

Alongside radiation, gamma-rays also produce thermal burn injuries and induce an immunosuppressive effect.[3][4]

Body response

After gamma-irradiation, and the breaking of DNA double-strands, a cell can repair the damaged genetic material to the limit of its capability . However, a study of Rothkamm and Lobrich has shown that the repairing process works well after high-dose exposure but is much slower in the case of a low-dose exposure. [5] This could mean that a chronic low-dose exposure cannot be fought by the body . The probability of detecting small alterations or of a detectable defect occurring is most likely small enough that the cell would replicate before initiating a full repair . Some cells can not detect their own genetic defects .

Risk assessment

The natural outdoor exposure in Great Britain is in the range 20-40 nSv/h.[6] Natural exposure to gamma rays is about 1 to 2 mSv a year, and the average total amount of radiation received in one year per inhabitant in the USA is 3.6 mSv.[7]

By comparison, the radiation dose from chest radiography is a fraction of the annual naturally occurring background radiation dose,[8] and the dose from fluoroscopy of the stomach is, at most, 0.05 Sv on the skin of the back.

For acute full-body equivalent dose, 1 Sv causes slight blood changes, 2-5 Sv causes nausea, hair loss, hemorrhaging and will cause death in many cases. More than 3 Sv will lead to death in less than two months in more than 80% of cases, and much over 4 Sv is more likely than not to cause death (see Sievert).

For low dose exposure, for example among nuclear workers, who receive an average radiation dose of 19mSv, the risk of dying from cancer (excluding leukemia) increases by 2 percent. For a dose of 100mSv, that risk increase is at 10 percent. By comparison, it was 32% for the Atom Bomb survivors.[9].

References

  1. Kelly, K. (2005). Radiation may have positive effects on health: study -- Low, chronic doses of gamma radiation had beneficial effects on meadow voles University of Toronto


1. ^ Rothkamm K. – Evidence for a lack of DNA double-strand break repair in human cells exposed to very low x-ray doses – Proceedings of the National Academy of Science of the USA, 2003; 100 (9) : 5057-5062.
2. ^ Shilnikova D.L. et al. – Cancer mortality risk among workers at the Mayak nuclear complex – Radiation Research, 2003; 159 (6): 787-798
3. ^ Ran X.Z. et al. – Effects of combined radiation and thermal burn injury on the survival of skin allograft and immune function in – Chinese Medical Journal, 1998; 111 (7): 634-637
4. ^ Randall K. et al. – The effect of whole-body gamma-irradiation on localized beta-irradiation-induced skin reactions in mice – International Journal of Radiation Biology, 1992; 62 (6): 729-733.
5. ^ Rothkamm K. – Evidence for a lack of DNA double-strand break repair in human cells exposed to very low x-ray doses – Proceedings of the National Academy of Science of the USA, 2003; 100 (9) : 5057-5062.
6. ^ Department for Environment, Food and Rural Affairs (Defra) UK – Keys facts about radioactivity – 2003, [1]
7. ^ United Nations Scientific Committee on the Effects of Atomic Radiation Annex E: Medical radiation exposures – Sources and Effects of Ionizing – 1993, p. 249, New York, UN
8. ^ US National Council on Radiation Protection and Measurements – NCRP Report No. 93 – pp 53-55, 1987. Bethesda, Maryland, USA, NCRP
9. ^ IARC – Cancer risk following low doses of ionising radiation - a 15 country study – [2]

See also

External links



Gamma (uppercase Γ, lowercase γ) is the third letter of the Greek alphabet. In the system of Greek numerals it has a value of 3. It was derived from the Phoenician letter Gimel .
..... Click the link for more information.
Electromagnetic (EM) radiation is a self-propagating wave in space with electric and magnetic components. These components oscillate at right angles to each other and to the direction of propagation, and are in phase with each other.
..... Click the link for more information.
Photon

Photons emitted in a coherent beam from a laser
Composition: Elementary particle
Family: Boson
Group: Gauge boson
Interaction: Electromagnetic
Theorized: Albert Einstein (1905–17)
Symbol: or
Mass: 0[1]
..... Click the link for more information.
atom (Greek ἄτομος or átomos meaning "indivisible") is the smallest particle still characterizing a chemical element.
..... Click the link for more information.
Electron-positron annihilation occurs when an electron and a positron (the electron's anti-particle) collide. The result of the collision is the conversion of the electron and positron and the creation of gamma ray photons or, less often, other particles.
..... Click the link for more information.
Radioactive decay is the process in which an unstable atomic nucleus loses energy by emitting radiation in the form of particles or electromagnetic waves. This decay, or loss of energy, results in an atom of one type, called the parent nuclide
..... Click the link for more information.
Electromagnetic (EM) radiation is a self-propagating wave in space with electric and magnetic components. These components oscillate at right angles to each other and to the direction of propagation, and are in phase with each other.
..... Click the link for more information.
Photon

Photons emitted in a coherent beam from a laser
Composition: Elementary particle
Family: Boson
Group: Gauge boson
Interaction: Electromagnetic
Theorized: Albert Einstein (1905–17)
Symbol: or
Mass: 0[1]
..... Click the link for more information.
See also: List of elements by atomic number

In chemistry and physics, the atomic number (also known as the proton number) is the number of protons found in the nucleus of an atom. It is traditionally represented by the symbol Z.
..... Click the link for more information.
2
(Amphoteric oxide)
Electronegativity 2.33 (scale Pauling)
Ionization energies
(more) 1st: 715.6 kJmol−1
2nd: 1450.5 kJmol−1
3rd: 3081.
..... Click the link for more information.
Concrete is a construction material that consists of cement (commonly Portland cement) as well as other cementitious materials such as fly ash and slag cement, aggregate (generally a coarse aggregate such as gravel limestone or granite, plus a fine aggregate such as sand or
..... Click the link for more information.
A quantity is said to be subject to exponential decay if it decreases at a rate proportional to its value. Symbolically, this can be expressed as the following differential equation, where N is the quantity and λ is a positive number called the decay constant.
..... Click the link for more information.
In nuclear and particle physics, the concept of a cross section is used to express the likelihood of interaction between particles.

The term is derived from the purely classical picture of (a large number of) point-like projectiles directed to an area that includes a solid
..... Click the link for more information.
photoelectric effect is a quantum electronic phenomenon in which electrons are emitted from matter after the absorption of energy from electromagnetic radiation such as x-rays or visible light.
..... Click the link for more information.
In physics, Compton scattering or the Compton effect, is the decrease in energy (increase in wavelength) of an X-ray or gamma ray photon, when it interacts with matter.
..... Click the link for more information.
Pair production refers to the creation of an elementary particle and its antiparticle, usually from a photon (or another neutral boson). This is allowed, provided there is enough energy available to create the pair – at least the total rest mass energy of the two
..... Click the link for more information.
The electronvolt (symbol eV) is a unit of energy. In theoretical physics, where distinctions between mass and energy are not concrete, it is often used also as a unit of mass (AAAS Science journal, 2006).
..... Click the link for more information.
The electronvolt (symbol eV) is a unit of energy. In theoretical physics, where distinctions between mass and energy are not concrete, it is often used also as a unit of mass (AAAS Science journal, 2006).
..... Click the link for more information.
See also: List of elements by atomic number

In chemistry and physics, the atomic number (also known as the proton number) is the number of protons found in the nucleus of an atom. It is traditionally represented by the symbol Z.
..... Click the link for more information.
Coulomb's law, developed in the 1780s by French physicist Charles Augustin de Coulomb, may be stated as follows:

The magnitude of the electrostatic force between two points electric charges is directly proportional to the product of the magnitudes of each

..... Click the link for more information.
Positron
Composition: Elementary particle
Family: Fermion
Group: Lepton
Generation: First
Interaction: Gravity, Electromagnetic, Weak
Antiparticle: Electron
Theorized: Paul Dirac, 1928
Discovered: Carl D.
..... Click the link for more information.
range of the particle. The range depends on the type of particle, on its initial energy and on the material which it passes.

For example, if the ionising particle passing through the material is a positive ion like alpha particle or proton, it will collide with atomic
..... Click the link for more information.
Ionization is the physical process of converting an atom or molecule into an ion by changing the difference between the number of protons and electrons. This process works slightly differently depending on whether an ion with a positive or a negative electric charge is being
..... Click the link for more information.
In nuclear physics, a decay product, also known as a daughter product, daughter isotope or daughter nuclide, is a nuclide resulting from the radioactive decay of a parent isotope or precursor nuclide.
..... Click the link for more information.
Ultraviolet (UV) light is electromagnetic radiation with a wavelength shorter than that of visible light, but longer than soft X-rays. It is so named because the spectrum starts with wavelengths slightly shorter than the wavelengths humans identify as the color violet
..... Click the link for more information.
Light is electromagnetic radiation of a wavelength that is visible to the eye (visible light). In a scientific context, the word "light" is sometimes used to refer to the entire electromagnetic spectrum.
..... Click the link for more information.
Electromagnetic (EM) radiation is a self-propagating wave in space with electric and magnetic components. These components oscillate at right angles to each other and to the direction of propagation, and are in phase with each other.
..... Click the link for more information.
FreQuency is a music video game developed by Harmonix and published by SCEI. It was released in November 2001. A sequel, titled Amplitude was released in 2003.
..... Click the link for more information.
energy (from the Greek ενεργός, energos, "active, working")[1] is a scalar physical quantity that is a property of objects and systems of objects which is conserved by nature.
..... Click the link for more information.
Photon

Photons emitted in a coherent beam from a laser
Composition: Elementary particle
Family: Boson
Group: Gauge boson
Interaction: Electromagnetic
Theorized: Albert Einstein (1905–17)
Symbol: or
Mass: 0[1]
..... Click the link for more information.


This article is copied from an article on Wikipedia.org - the free encyclopedia created and edited by online user community. The text was not checked or edited by anyone on our staff. Although the vast majority of the wikipedia encyclopedia articles provide accurate and timely information please do not assume the accuracy of any particular article. This article is distributed under the terms of GNU Free Documentation License.