Day length fluctuations

Short-term changes in the length of the day For related longer-term variations, see ΔT (timekeeping). For regular changes in the length of a solar day through the year due to the obliquity of the ecliptic and the eccentricity of the Earth's orbit around the Sun, see Equation of time.

The length of the day (LOD), which has increased over the long term of Earth's history due to tidal effects, is also subject to fluctuations on a shorter scale of time. Exact measurements of time by atomic clocks and satellite laser ranging have revealed that the LOD is subject to a number of different changes. These subtle variations have periods that range from a few weeks to a few years. They are attributed to interactions between the dynamic atmosphere and Earth itself. The International Earth Rotation and Reference Systems Service monitors the changes.

Contents

Introduction

In the absence of external torques, the total angular momentum of Earth as a whole system must be constant. Internal torques are due to relative movements and mass redistribution of Earth's core, mantle, crust, oceans, atmosphere, and cryosphere. In order to keep the total angular momentum constant, a change of the angular momentum in one region must necessarily be balanced by angular momentum changes in the other regions.

Crustal movements (such as continental drift) or polar cap melting are slow secular events. The characteristic coupling time between core and mantle has been estimated to be on the order of ten years, and the so-called 'decade fluctuations' of Earth's rotation rate are thought to result from fluctuations within the core, transferred to the mantle. The length of day (LOD) varies significantly even for time scales from a few years down to weeks (Figure), and the observed fluctuations in the LOD - after eliminating the effects of external torques - are a direct consequence of the action of internal torques. These short term fluctuations are very probably generated by the interaction between the solid Earth and the atmosphere.

Observations

Deviation of day length from SI based day

Any change of the axial component of the atmospheric angular momentum (AAM) must be accompanied by a corresponding change of the angular momentum of Earth's crust and mantle (due to the law of conservation of angular momentum). Because the moment of inertia of the system mantle-crust is only slightly influenced by atmospheric pressure... ...read more

This article is copied from an article on Wikipedia® - the free encyclopedia created and edited by its online user community. This article is distributed under the terms of GNU Free Documentation License.