# Shellsort

Shellsort, Sorting algorithm which uses multiple comparison intervals.

Sorting algorithm which uses multiple comparison intervals Swapping pairs of items in successive steps of Shellsort with gaps 5, 3, 1

Shellsort, also known as Shell sort or Shell's method, is an in-place comparison sort. It can be seen as either a generalization of sorting by exchange (bubble sort) or sorting by insertion (insertion sort). The method starts by sorting pairs of elements far apart from each other, then progressively reducing the gap between elements to be compared. By starting with far apart elements, it can move some out-of-place elements into position faster than a simple nearest neighbor exchange. Donald Shell published the first version of this sort in 1959. The running time of Shellsort is heavily dependent on the gap sequence it uses. For many practical variants, determining their time complexity remains an open problem.

## Description

Shellsort is an optimization of insertion sort that allows the exchange of items that are far apart. The idea is to arrange the list of elements so that, starting anywhere, taking every hth element produces a sorted list. Such a list is said to be h-sorted. It can also be thought of as h interleaved lists, each individually sorted. Beginning with large values of h allows elements to move long distances in the original list, reducing large amounts of disorder quickly, and leaving less work for smaller h-sort steps to do. If the list is then k-sorted for some smaller integer k, then the list remains h-sorted. Following this idea for a decreasing sequence of h values ending in 1 is guaranteed to leave a sorted list in the end.

In simplistic terms, this means if we have an array of 1024 numbers, our first gap (h) could be 512. We then run through the list comparing each element in the first half to the element in the second half. Our second gap (k) is 256, which breaks the array into four sections (starting at 0,256,512,768), and we make sure the first items in each section are sorted relative to each other, then the second item in each section, and so on. In practice the gap sequence could be anything, but the last gap is always 1 to finish the sort (effectively finishing with an ordinary insertion sort).

An example run of Shellsort with gaps 5, 3 and 1 is shown below.

The first pass, 5-sorting, performs insertion sort on five separate subarrays (a1, a6, a11), (a2, a7, a12), (a3, a8), (a4, a9), (a5, a10). For instance, it changes the subarray (a1, a6, a11) from (62... ...read more