Synchronization (alternating current)

In an alternating current electric power system, synchronization is the process of matching the frequency of a generator or other source to a running network. An AC generator cannot deliver power to an electrical grid unless it is running at the same frequency as the network. If two unconnected segments of a grid are to be connected to each other, they cannot exchange AC power until they are brought back into exact synchronization.

A direct current (DC) generator can be connected to a power network by adjusting its open-circuit terminal voltage to match the network voltage, by either adjusting its speed or its field excitation. The exact engine speed is not critical. However, an AC generator must match both the amplitude and the timing of the network voltage, which requires both speed and excitation to be systematically controlled for synchronization. This extra complexity was one of the arguments against AC operation during the war of currents in the 1880s. In modern grids, synchronization of generators is carried out by automatic systems.



There are five conditions that must be met before the synchronization process takes place. The source (generator or sub-network) must have equal line voltage, frequency, phase sequence, phase angle, and waveform to that of the system to which it is being synchronized.

Waveform and phase sequence are fixed by the construction of the generator and its connections to the system. During installation of a generator, careful checks are made to ensure the generator terminals and all control wiring is correct so that the order of phases (phase sequence) matches the system. Connecting a generator with the wrong phase sequence will result in a short circuit as the system voltages are opposite to those of the generator terminal voltages.

The voltage, frequency and phase angle must be controlled each time a generator is to be connected to a grid.

Generating units for connection to a power grid have an inherent droop speed control that allows them to share load proportional to their rating. Some generator units, especially in isolated systems, operate with isochronous frequency control, maintaining constant system frequency independent of load.


The sequence of events is similar for manual or automatic synchronization. The generator is brought up to approximate synchronous speed by supplying more energy to its shaft - for example, opening the valves on a steam turbine, opening the gates on a hydraulic turbine, or incre... more

This article is copied from an article on Wikipedia® - the free encyclopedia created and edited by its online user community. This article is distributed under the terms of GNU Free Documentation License.