In geometry, a **triangular prism** is a three-sided prism; it is a polyhedron made of a triangular base, a translated copy, and 3 faces joining corresponding sides. A **right triangular prism** has rectangular sides, otherwise it is *oblique*. A **uniform triangular prism** is a right triangular prism with equilateral bases, and square sides.

Equivalently, it is a polyhedron of which two faces are parallel, while the surface normals of the other three are in the same plane (which is not necessarily parallel to the base planes). These three faces are parallelograms. All cross-sections parallel to the base faces are the same triangle.

## Contents

- 1 As a semiregular (or uniform) polyhedron
- 2 Volume
- 3 Truncated triangular prism
- 4 Facetings
- 5 Related polyhedra and tilings
- 6 See also
- 7 References

## As a semiregular (or uniform) polyhedron

A right triangular prism is semiregular or, more generally, a uniform polyhedron if the base faces are equilateral triangles, and the other three faces are squares. It can be seen as a **truncated trigonal hosohedron**, represented by Schläfli symbol t{2,3}. Alternately it can be seen as the Cartesian product of a triangle and a line segment, and represented by the product, The dual of a triangular prism is a triangular bipyramid.

The symmetry group of a right 3-sided prism with triangular base is *D3h* of order 12. The rotation group is *D3* of order 6. The symmetry group does not contain inversion.

## Volume

The volume of any prism is the product of the area of the base and the distance between the two bases. In this case the base is a triangle so we s... ...read more